Computation of Jacobsthal's function h(n) for n<50

نویسنده

  • Thomas R. Hagedorn
چکیده

Let j(n) denote the smallest positive integer m such that every sequence of m consecutive integers contains an integer prime to n. Let Pn be the product of the first n primes and define h(n) = j(Pn). Presently, h(n) is only known for n ≤ 24. In this paper, we describe an algorithm that enabled the calculation of h(n) for n < 50. 0.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Algorithmic concepts for the computation of Jacobsthal's function

The Jacobsthal function has aroused interest in various contexts in the past decades. We review several algorithmic ideas for the computation of Jacobsthal’s function for primorial numbers and discuss their practicability regarding computational effort. The respective function values were computed for primes up to 251. In addition to the results including previously unknown data, we provide exh...

متن کامل

Mixed cycle-E-super magic decomposition of complete bipartite graphs

An H-magic labeling in a H-decomposable graph G is a bijection f : V (G) ∪ E(G) → {1, 2, ..., p + q} such that for every copy H in the decomposition, ∑νεV (H) f(v) + ∑νεE (H) f(e) is constant. f is said to be H-E-super magic if f(E(G)) = {1, 2, · · · , q}. A family of subgraphs H1,H2, · · · ,Hh of G is a mixed cycle-decomposition of G if every subgraph Hi is isomorphic to some cycle Ck, for k ≥...

متن کامل

Almost Sure Convergence Rates for the Estimation of a Covariance Operator for Negatively Associated Samples

Let {Xn, n >= 1} be a strictly stationary sequence of negatively associated random variables, with common continuous and bounded distribution function F. In this paper, we consider the estimation of the two-dimensional distribution function of (X1,Xk+1) based on histogram type estimators as well as the estimation of the covariance function of the limit empirical process induced by the se...

متن کامل

An upper bound on Jacobsthal's function

The function h(k) represents the smallest number m such that every sequence of m consecutive integers contains an integer coprime to the first k primes. We give a new computational method for calculating strong upper bounds on h(k).

متن کامل

Computation of Jacobsthal ’ S Function

Let j(n) denote the smallest positive integer m such that every sequence of m consecutive integers contains an integer prime to n. Let Pn be the product of the first n primes and define h(n) = j(Pn). Presently, h(n) is only known for n ≤ 24. In this paper, we describe an algorithm that enabled the calculation of h(n) for n < 50. 0.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Math. Comput.

دوره 78  شماره 

صفحات  -

تاریخ انتشار 2009